

B. Sc. (Sem. IV) (CBCS) Examination March / April - 2018

MATH-04(A): Linear Algebra & Differential Geometry (Elective) (New Course)

Faculty Code: 003 Subject Code: 1014008

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) All questions are compulsory.

(2) Figures to the right indicate full marks of the question.

- 1 (a) Answer the following:
 - (1) If W_1 and W_2 are subspaces of a vector space V, then $W_1 \cup W_2$ subspace of V. (True / False)
 - (2) Define: Linear span of a set.
 - (3) State whether the subset $\{(0,0,0),(1,2,3),(2,1,2)\}$ of \mathbb{R}^3 is linearly independent or dependent.
 - (4) Define: Basic of a vector space.
 - (b) Attempt any **one**:

(1) Prove that any superset of linearly dependent set is also linearly dependent.

2

- (2) Let V be a vector space over \mathbb{R} . Prove that a non-empty subset W of a vector space V is a subspace of V if for all $c_1, c_2 \in \mathbb{R}$ and $w_1, w_2 \in W$, $c_1w_1 + c_2w_2 \in W$.
- (c) Attempt any **one**:

(1)

3

 $W = \{(a, b, c) | a^2 + b^2 + c^2 \le 1\}$ is a subspace of

Examine whether the set

 \mathbb{R}^3 or not.

- (2) Prove that $(1, 0, -1) \in span(A)$ and $(0, -1, 1) \notin span(A)$, where $A = \{(2, 1, 0), (-1, 0, 1), (0, 1, 2)\}$.
- (d) Attempt any **one**:

5

- (1) Verify whether the set $V = \{(a, b) | a, b \in \mathbb{R}, b > 0\}$ under the operations (a, b) + (c, d) = (a + c, bd), $\alpha(a, b) = (a\alpha, b^{\alpha}), (a, b), (c, d) \in V, \alpha \in \mathbb{R}$ is a vector space over \mathbb{R} or not ?
- (2) Let V be a vector space and $A = \{v_1, v_2, ..., v_n\} \subset V$ be such that span (A) = V. If $w_1, w_2, ..., w_m$ are linearly independent vectors of a V then prove that $m \leq n$.

 $\mathbf{2}$

2 (a) Answer the following:

4

- (1) Define: Dimension of a vector space.
- (2) What is the standard basis of the vector space $P_2(\mathbb{R})$?
- (3) If W is a subspace of a finite dimensional vector space V, then dim W ____ dim V.
- (4) If W is a subspace of a vector space V, then $\dim \left(W \oplus W^{\perp}\right) = \underline{\hspace{1cm}}.$
- (b) Attempt any one:

2

(1) Examine whether the subset

$$A = \left\{ \sin x, \cos x, \sin \left(x + \frac{\pi}{6} \right) \right\}$$
 of real vector space

 $C[0, 2\pi]$ is linearly dependent or linearly independent.

- (2) If W is a subspace of a finite dimensional vector space V such that dim $W = \dim V$ then prove that W = V.
- (c) Attempt any one:

3

- (1) Prove that the intersection of two subspaces of a vector space *V* is also a subspace of *V*.
- (2) Extend the subset $\left\{1-x+x^2, 2x-x^2+x^3\right\}$ of $P_3(\mathbb{R})$ to form a basis of $P_3(\mathbb{R})$.
- (d) Attempt any one:

- (1) Show that the set $A = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ is a basis of \mathbb{R}^3 . Find coordinates of the vector (2, 1, -1) of \mathbb{R}^3 with respect to this basis.
- (2) Let $W_1 = \{(x y, y + z, y, z)\}$ and $W_2 = \{(x, x + y, x + y + z, y z) \mid x, y, z \in \mathbb{R}\} \text{ be subspaces of } \mathbb{R}^4. \text{ Find dim } (W_1 + W_2).$

- **3** (a) Answer the following:
 - (1) Define: Linear Transformation.
 - (2) Let V be a vector space. Prove that $T: V \to V$ defined as T(v) = v is a linear transformation.
 - (3) Let $T: U \to V$ be a linear transformation and let θ and θ' be zero vectors of U and V respectively. Prove that $T(\theta) = \theta'$.
 - (4) Define: Range of a linear transformation.
 - (b) Attempt any one:
 - (1) Let $T:U\to V$ be a linear transformation and N_T denote kernel of T. Prove that N_T is a subspace of U.
 - (2) Let $T: U \to V$ and $S: V \to W$ be linear transformation. Prove that the composition $S: T: U \to W$ is a linear transformation.
 - (c) Attempt any **one**:
 - (1) Prove that a linear transformation $T:U\to V$ is one-one if and only if $N_T=\{\theta\}$, where N_T denotes kernel of T and θ denote zero vector of U.
 - (2) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x y + z, y z, z) be a linear transformation. Prove that T is nonsingular. Also find T^{-1} .

4

2

- (d) Attempt any one:
 - (1) Let L(U,V) denote the set of all linear transformations from a vector space U to a vector space V. Prove that L(U,V) is a vector space over IR under usual operations.
 - (2) State and prove rank-nullity theorem for linear transformation.
- 4 (a) Answer the following:
 - (1) Define: Linear function. Give a suitable example of it.
 - (2) Define: Eigenvalue of a linear transformation.
 - (3) If $\dim U = m$ and $\dim V = n$ then what is $\dim(L(U, V))$?
 - (4) If λ is an eigenvalue of a linear transformation T and B is a basis of T then $\left[\left(T-\lambda I_n\right):B\right]$ is singular. (True / False)
 - (b) Attempt any **one**:
 - (1) Define: Matrix associated with a linear transformation.
 - (2) Let $T: V \to V$ be a linear transformation and $\dim(V) = n$. If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are distinct eigenvalues of T and $B = \{v_1, v_2, \ldots, v_n\}$ is corresponding T-eigen basis of V, then prove that $[T:B] = diag(\lambda_1, \lambda_2, \ldots, \lambda_n)$, where v_i is the eigenvector corresponding to $\lambda_i, 1 \le i \le n$.

5

4

- (c) Attempt any **one**:
 - (1) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined as T(x, y, z) = (x + y, y + z). Find $[T: B_1, B_2]$, where $B_1 = \{(1, 1, 1), (1, 0, 0), (1, 1, 0)\}$ and $B_2 = \{e_1, e_2\}$ are basis of \mathbb{R}^3 and \mathbb{R}^2
 - (2) Find eigenvalues of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as T(x, y) = (3y, 2x y).
- (d) Attempt any one:

respectively.

(1) Let $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ be the linear

transformation defined as $T(p(x)) = \int_{0}^{x} p(x) dx$.

Let $B_1 = \{1, x, x^2\}$ and $B_2 = \{1, x, x^2, x^3\}$ be the basis of $P_2(I\!\!R)$ and $P_3(I\!\!R)$ respectively. Find $T: B_1, B_2$

(2) Find eigenvalues and eigenvectors of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as T(x, y, z) = (x + y + z, x + y + z, x + y + z)

3

5 (a) Answer the following:

- 4
- (1) Write the formula to find radius of curvature of the curve given by $r = f(\theta)$.
- (2) Define: Point of inflexion of a curve.
- (3) Show that the curve given by $y = \log x$ is concave downwards everywhere.
- (4) Define: Multiple point of a given curve.
- (b) Attempt any **one**:

2

(1) Using Newton's method, find the radius of curvature at origin of the curve

$$x^4 + y^4 + x^3 - y^3 + x^2 - y^2 + y = 0$$

- (2) Find asymptotes of the curve $(x^2 + y^2)x ay^2 = 0$ parallel to coordinate axes.
- (c) Attempt any one:

- (1) Find the interval of values of x for which the curve $y = (x^2 + 4x + 5)e^{-x}$ is concave upwards or concave downwards. Also find the points of inflexion.
- (2) Find oblique asymptote of the curve

$$y = \frac{x^2 + 2x - 1}{x}.$$

(d) Attempt any one:

- (1) Derive the formula to find radius of curvature of the curve given by y = f(x).
- (2) Discuss double points of the curve

$$x^3 + y^3 - 3x^2 - 3xy + 3x + 3y - 1 = 0$$